DE LA RECHERCHE À L'INDUSTRIE

Model-based system engineering for safety analysis of complex systems

MBSAW'12 <u>Nataliya YAKYMETS</u>, Hadi JABER, Agnès LANUSSE CEA, LIST, Laboratory of Model-Driven Engineering for Embedded Systems

www.cea.fr

11 Septembre 2012

Classical SA techniques: Fault trees, FMEA, etc...

- Performed mostly manually
- Time consuming, costly, high probability of errors...
- Little tool support
- No strong links between system engineering and SA

Achieved results in formal approaches

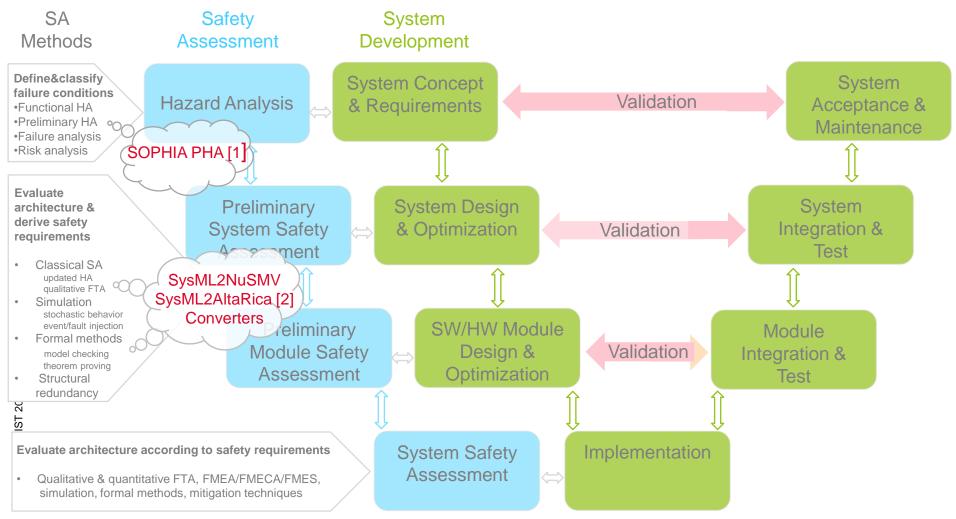
- Industrial toolsets (Isograph, Item, Relex, etc) : well-elaborated but costly
- Academic tools (FSAP-NUSMV, ARC/AltaRica, etc) : gap in graphical representation of SA information

Goals

- To provide a support for SA engineers by integrating SA techniques into model-driven engineering
- To leverage features of UML/SysML to develop a toolset for model checking and fault tree generation

Motivation

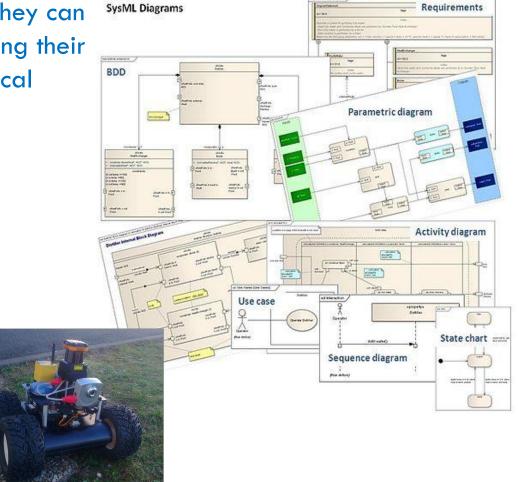
- Model-Based Systems Engineering & Safety Analysis
- Safety Analysis Toolset
- Example
- Conclusion & Further work



© CEA LIST 2012

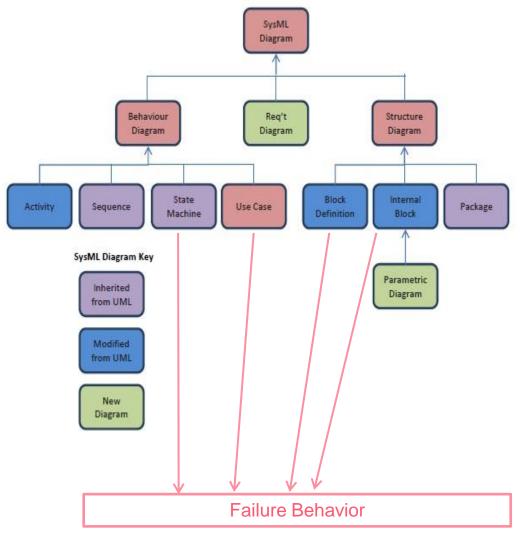
DE LA RECHERCHE À L'INDUSTI

SA integrated development flow Parallel V-cycle



[1] Cancila, D.; Terrier, F.; Belmonte, F.; Dubois, H.; Espinoza, H.; Gérard, S. & Cucurru, A. SOPHIA: a Modeling Language for Model-Based Safety Engineering 2nd Int.I Workshop On Model Based Architecting And Construction Of Embedded Systems, 2009, 11-26;

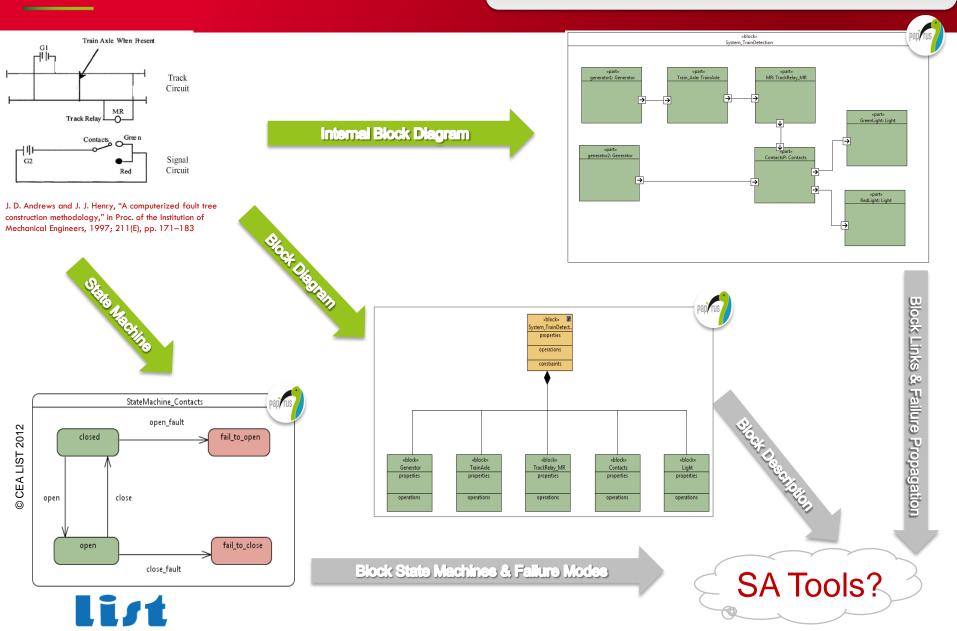
[2] H. Jaber, Analyse de sûreté à partir de modèles de systèmes, M.Sc. Thesis, CEA



Engineers are finding that they can save significant time by modeling their system before building a physical prototype

Engineers are finding that they can save significant time by modeling their system before building a physical prototype

© CEA LIST 2012


P. David, V. Idasiak & F.Kratz (2009a). Use and improvements of SysML in reliability study. Proc. of the 55th Annual Reliability and Maintainability Symposium, RAMS 2009, Fort Worth, Texas, USA, Jan. 2009

- General-purpose modeling language
- Semantics are flexible and expressive
- Global overview of architecture
- ■Combines HW & SW
- Integrated requirements and life cycle traceability support
- SCADE integrates system view with SysML

DE LA RECHERCHE À L'INDUSTR

SysML Benefits for SA

MBSAW'2012, 11 - 12 Septembre 2012, Bordeaux, France

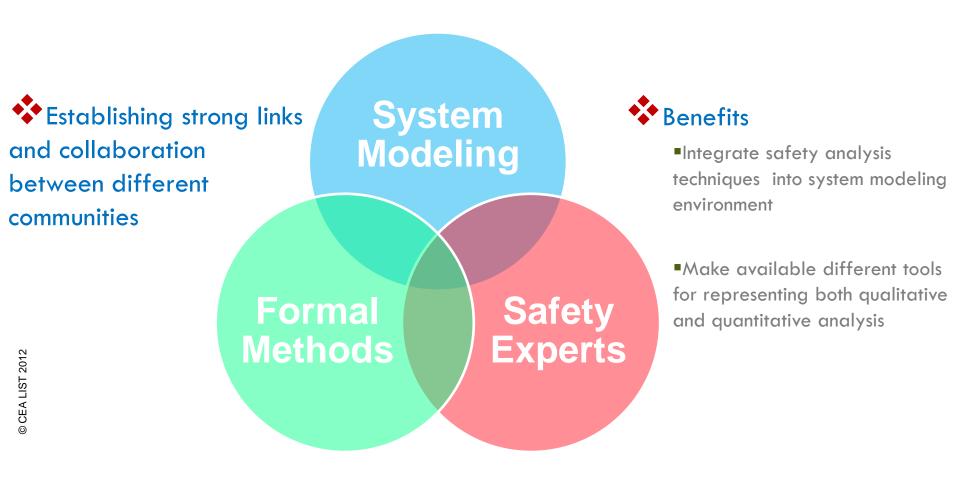
Tool overview Comparison

ΤοοΙ	NuSMV [1]	ARC, AltaRica [2]	KB3 Figaro	XFTA [3]	HIP- HOPS	Safety Architect	Isograph tools	Item Tools	Relex Tools
Safety Analysis					[4]	[5]			
Open source	✓	~	\checkmark	~	Partners, MAENAD project	Partners, BUILD-IT- Safe project	30 days	30 days	30 days
Hazard Analysis					Failure analysis		\checkmark	Risk analysis	Risk analysis
FT generation	✓	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
FTA & optimization			\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Event ordering analysis	✓	\checkmark					\checkmark	\checkmark	\checkmark
Model checking	BDD/SAT, Plain, CTL, LTL, PSL	BDD/SAT, Plain, μ-calculus, CTL*							
FMEA/FMECA/FMEDA					FMEA	FMEA	FMEA FMECA	\checkmark	FMEA FMECA
Common Cause Analysis			\checkmark	\checkmark			\checkmark	\checkmark	\checkmark

© CEA LIST

[1] A. Cimatti et al. NuSMV2: An OpenSource Tool for Symbolic Model Checking. CAV'2002, Copenhagen, Denmark, July 27-31, 2002

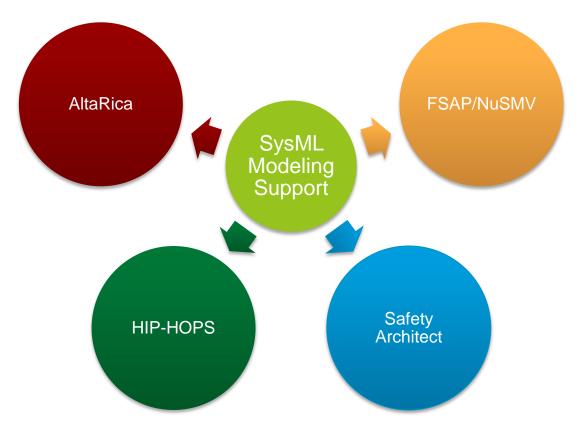
[2] A. Rauzy. Modes automata and their compilation into fault trees. Reliability Engineering and System Safety, 78:1–12, 2002


[3] http://www.lix.polytechnique.fr/~rauzy/xfta/xfta.htm

[4] Y. Papadopoulos et al. Engineering Failure Analysis & Design Optimisation with HiP-HOPS, Journal of Engineering Failure Analysis, 2011 [5] F. Vallée SAFETY ARCHITECT© : un outil d'AMDE compatible avec les concepts et outils d'Ingénierie des Systèmes Complexes, MBSAW'11

DE LA RECHERCHE À L'INDUSTR

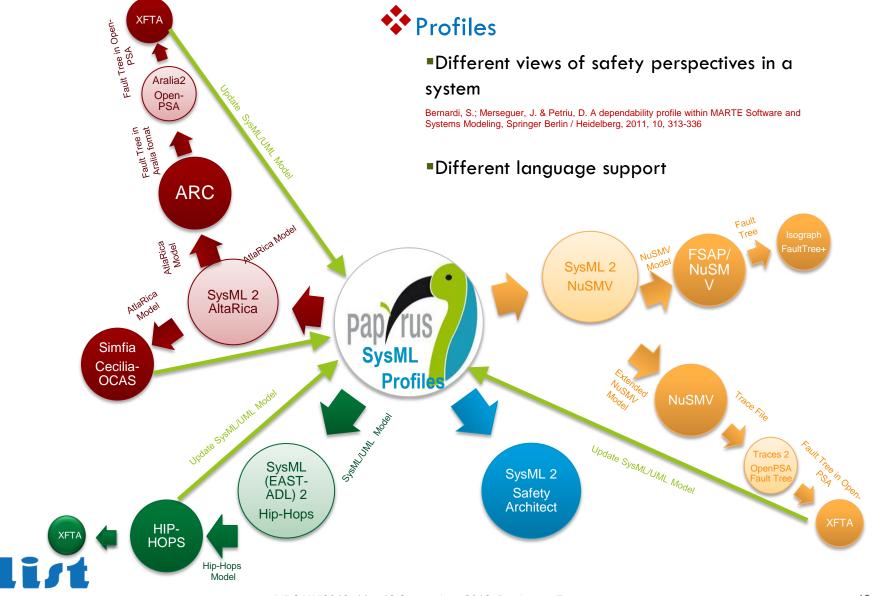
CONTENTS


- Motivation
- Model Based Systems Engineering & Safety Analysis
- Safety Analysis Toolset
- Example
- Conclusion & Further work

DE LA RECHERCHE À L'INDUSTR

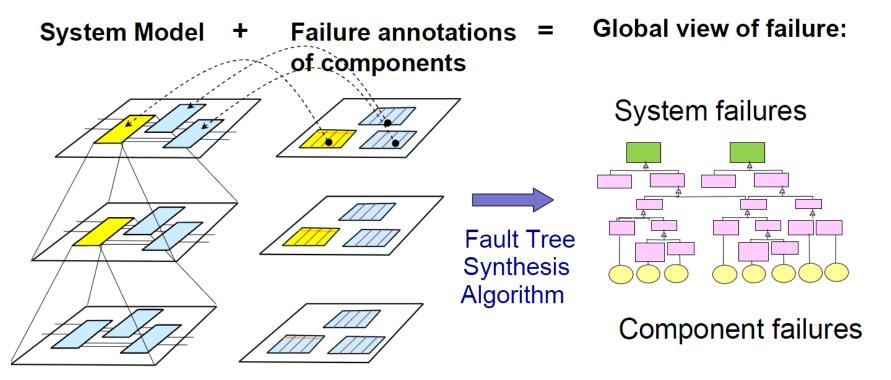
Cea

System Modelling Environment for SA



11

DE LA RECHERCHE À L'INDUSTRI


System Modelling Environment for SA Possible tool flows

12

DE LA RECHERCHE À L'INDUSTRI

© CEA LIST 2012

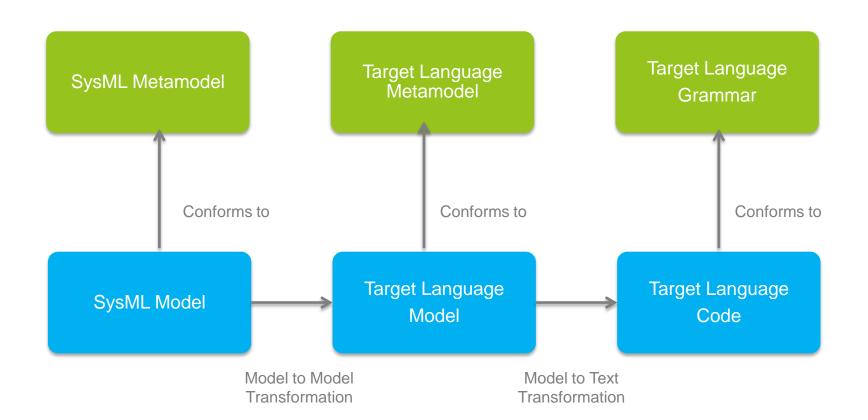
Profiles (EAST-ADL, etc)

Analytical way (Safety Architect, HIP-HOPS)

System modeling diagrams (State Machine SysML diagrams, comments, etc)

list.

DE LA RECHERCHE À L'INDUSTR


Model Annotation with Failure Behaviour Methods

Profiles (EAST-ADL, etc) Analytical way (Safety Architect, HIP-HOPS) System modeling diagrams (State Machine SysML diagrams, comments, etc)

© CEA LIST 2012

15

DE LA RECHERCHE À L'INDUSTRI

File Edit 🥠 Diagram Papyrus Window Help

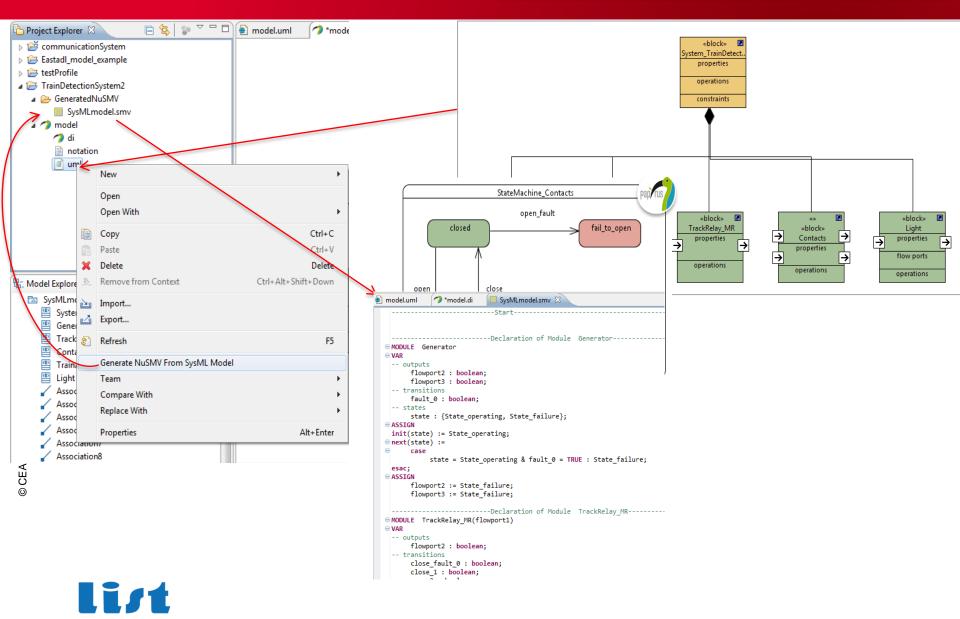
SysML2AltaRica converter plug-in Interface

📑 🤭 Papyrus

Resource

6888 Tahoma - 9 - B I A - み - ノ - 🔍 🔷 🌳 🍲 🌃 - 誌 唱 🛂 🖬 🖫 🖬 🖬 💀 🖬 🖬 🖬 🖬 → ▼ 📑 🕺 ▼ 📲 ▼ 🧤 ▼ 🏵 ▼ 🔶 ▼ ↔ ▼ 💾 🗂 🛱 ▼ 50% - 🗰 📾 📾 📄 🔄 🍃 🍸 🗖 🗖 📪 exempleIntroductif.di 🕺 陷 Project Explorer 🛛 🔪 🗁 Challenge4_2011-07-07 🗁 communicationSystem 😂 ExempleIntroductif AltaRica généré 🕞 GeneratedAltaRica Sortie à analyser ExempleIntroductifModel.alt out_System.arc out_System.txt Commandes d'ARC out_System.txt.xml exempleIntroductif Résultat d'ARC ⁄ di notation en format texte 🔳 uml Et en format 🗁 TrainDetectionSystem XML (openPSA ect_CC = ((norFM and norFM2) and in_C a, B.+ ((norFhit) and norFhit) and in_B Modèle SysML 🔂 IBD 🖂 BDD 🖾 📄 out_System.txt 🖾 (In1_System._isAbsent) (motor.FM2 occurs) (computerCommand.FM1_occurs) (motor.FM1_occurs) 🐮 Model Explorer 🛛 - -Résultats d'ARC (computerCommand.FM2_occurs) (battery1.FM2_occurs, battery2.FM1_occurs) 💕 🔍 🦺 🖻 😫 (battery1.FM2 occurs, battery2.FM2 occurs) ExempleIntroductifModel (battery2.FM1_occurs, battery1.FM1_occurs) «Block» System (battery1.FM1_occurs, battery2.FM2_occurs) (E) «Block» Motor 4 Association5 «Block» Battery ExempleIntroductifModel.alt «Block» ComputerCommand Association9 //----------Start Declaration of Node Motor Association10 node Motor Code AltaRica généré flow Association11 Diagram BDD in1 M : bool : in ; in2_M : bool : in ; ownedComment (3) out_M : bool : out ; state FM1 : bool ; 응 | 법 🛐 문 🗸 🗆 🗆 E Outline 🖾 FM2 : bool ; 🔲 Properties 🛛 📮 Console System Name IBD UML SysML InternalBlock Type Profile Stereotype display Text Ŧ Text alignment Horizontal -Display place Compartment Appearance Applied stereotypes: Advanced Block (from SysML::Blocks)

ь. 7 - 6


Ŧ

© CEA LIST 2012

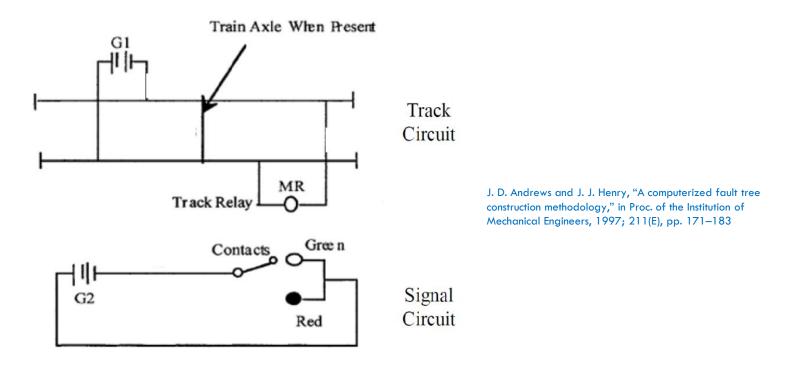
DE LA RECHERCHE À L'INDUSTRI

Cez

SysML2NuSMV converter plug-in Interface

CONTENTS

- Motivation
- Model Based Systems Engineering & Safety Analysis
- Safety Analysis Toolset
- Example
- Conclusion & Further work



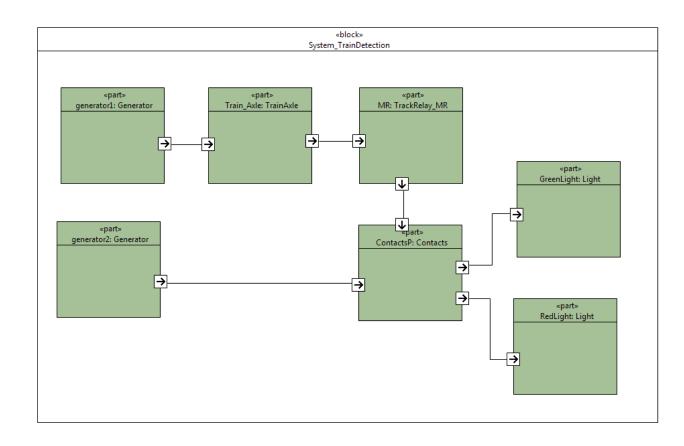
•G1 excites Relay core, which in turn attracts the Contact, so that Signal Circuit for Green light is closed (Green light is on, Red light is off)

Train arrives

© CEA LIST 2012

Track Circuit is short-cut through the Train Axle. Therefore, the Relay is not excited, and Red light is on while Green light is off

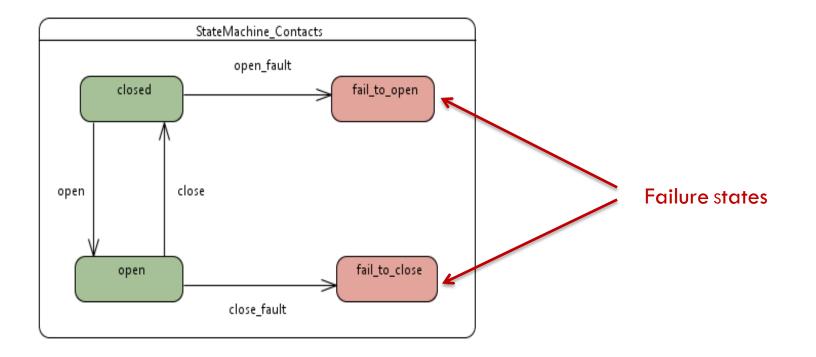
Train Detection System Block Diagram

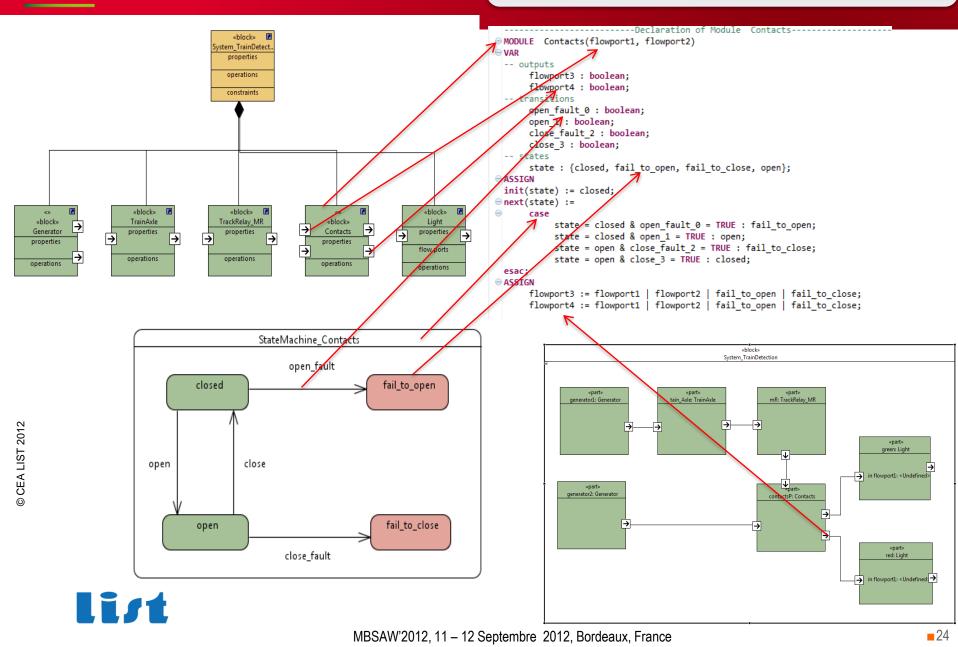


list

MBSAW'2012, 11 - 12 Septembre 2012, Bordeaux, France

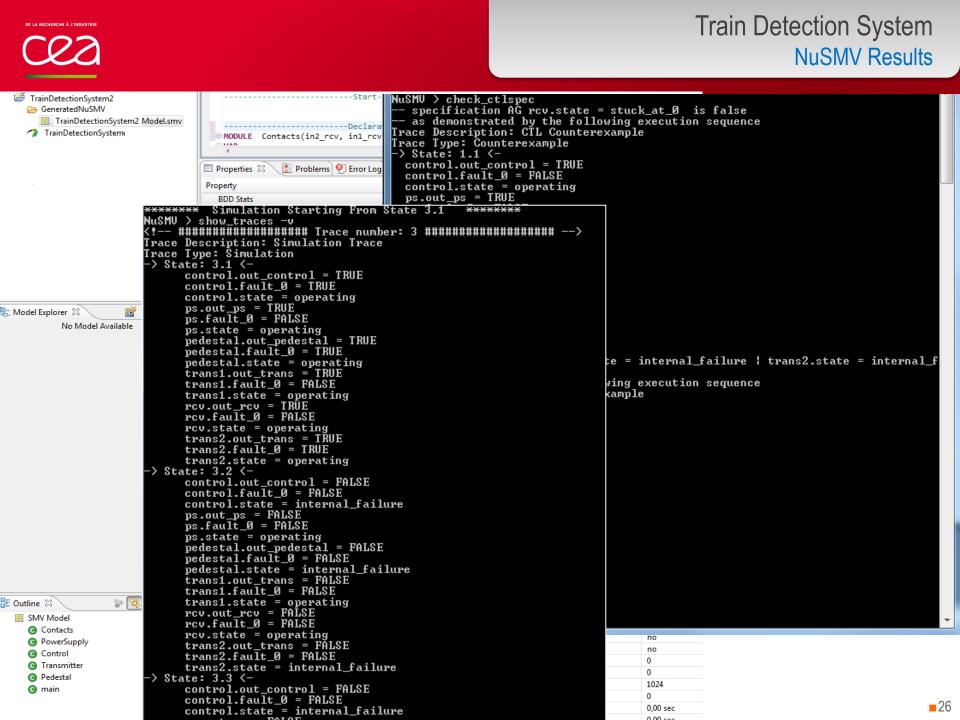
Block interconnections


Propagation of faults through the system


Each block has an associated State Machine Diagram
 Annotation of the failure modes for each block

cea

Train Detection System NuSMV Input Model



Cea

Train Detection System NuSMV Results

25

TrainDetectionSystem2	Start		
🔁 GeneratedNuSMV			
TrainDetectionSystem2 Model.smv	Declaration of Module Contacts		
TrainDetectionSystem	⊖ MODULE Contacts(in2_rcv, in1_rcv)	-	
	🔲 Properties 🕴 📓 Problems 👰 Error Log 🚮 Metamodel Explorer		
	Property	Value	*.smv
	BDD Stats		•31114
	Arc violation threshold	0	
	Cache hit threshold for resizing	30%	
	Dead nodes counted in triggering reordering	no	
	Default BDD reordering method	4	
	Default ZDD reordering method	4	
	Dynamic reordering of BDDs enabled	no	
	Dynamic reordering of ZDDs enabled	no	
	GA population size	0	
	Garbage collection enabled	yes	
🗄 Model Explorer 🛿 🛛 📸 🔍 🛱 🗖 🗖	Garbage collections so far	0	
No Model Available	Group checking criterion	7	
	Hard limit for cache size	1398101	
	Limit for fast unique table growth	838860	
	Maximum growth while sifting a variable	1,2	
	Maximum number of variables sifted per reordering	1000	
	Maximum number of variable swaps per reordering	2000000	
	Memory in use	4737740	
	Next reordering threshold	4004	-
	Number of BDD and ADD nodes	4	K
	Number of BDD variables	0	
	Number of buckets in unique table	256	
	Number of cache collisions	0	Statistics
	Number of cache deletions	0	
	Number of cache entries	262144	
	Number of cache hits	0	
	Number of cache insertions	0	
	Number of cache look-ups	0	
	Number of crossovers for GA	0	
	Number of dead BDD and ADD nodes	0	
	Number of dead ZDD nodes	0	
	Number of Live BDD and ADD nodes	4	
	Number of LIVE ZDD nodes	0	
	Number of ZDD nodes	0	
	Number of ZDD hodes	0	
🗄 Outline 🛛 👘 🕞 🛱 🎽 🗖 🗖	Peak number of live nodes	4	
SMV Model	Peak number of nodes	4 1022	
Contacts			
O PowerSupply	Realignment of BDDs to ZDDs enabled	no	
Control	Realignment of ZDDs to BDDs enabled	no	
O Transmitter	Recombination threshold	0	
O Pedestal	Reorderings so far	0	
🕒 main	Soft limit for cache size	1024	
	Symmetry violation threshold	0	
	Time for garbage collection	0,00 sec	
	Lumo for reordering	0.00 coc	

Cez

Train Detection System ARC Results

🔁 Challenge4_2011-07-07				
🔁 communicationSystem	Node	Content		
🗃 EAST-TEST	?=? xml	version="1.0" encoding="UTF-8" standalone="no		
ExempleIntroductif	E e open-psa	Volsion- The encoding- on a scandalone- ne		
EaunchARC	E e define-fault-tree			
TrainDetectionSystem	(a) name	FT		
🗄 🗁 GeneratedAltaRica	E e define-gate			
📲 SytemTrainDetectionModel.alt	(a) name	TOP Event		
	E e or			
	E e gate			
	a) name	GateAND1		
out2_System.txt	E e gate			
out1_System.txt.xml	a name	GateAND2		
ut2_System.txt.xml	E e gate			
🛙 🥏 systemTrainDetection	a name	GateAND3		
	E 🖲 gate			
📄 Model_SytemTrainDetectionModel_BDD_TrainDetectionSystem.PNG	(a) name	GateAND4		
	🖃 🖻 define-gate			
	(a) name	GateAND1		
	🖃 🦲 and			
	🖃 🖻 basic-event			
	(a) name	in2_SystemisAbsent		
	🖃 🖻 define-gate			
	(a) name	GateAND2		
	🖃 🖻 and			
	🖃 💽 basic-event			
	(a) name	concats.concatsFailToOpen_occurs		
	🖃 🖻 define-gate			
	a name	GateAND3		
	🖃 🖻 and			
	🖃 🖻 basic-event			
	a name	generator2.internalFailure_occurs		
	🖃 🖻 define-gate			
	a name	GateAND4		
	🖃 🖻 and			
	🖃 🖻 basic-event			
	ame	greenLight.internalFailure_occurs		

Fault tree in Open PSA format

list.

CONTENTS

- Motivation
- Model Based Systems Engineering & Safety Analysis
- Safety Analysis Toolset
- Example
- Conclusion & Further work

System Modelling Environment for Safety Analysis

The use of UML/SysML and Papyrus platform for further model checking and fault tree generation

- Graphical and accessible language
- Modelling of system architecture, behaviour and failure logic

The support of two transformation methods and associated SA flows based on ARC(AltaRica) and NuSMV

•Fault tree generation, optimization and analysis

Graphical representation of failure data using State Machine Diagrams

Integrate different SA tools, plug-ins, profiles and libraries

FMEA generation and analysis

Develop SA profiles for SysML models

Reflect the results of quantitative and qualitative safety analysis in SysML models
Graphical representation of Fault Trees
Distinguish failure modes in State Machines

Commissariat à l'énergie atomique et aux énergies alternatives Institut Carnot CEA LIST Centre de Saclay | 91191 Gif-sur-Yvette Cedex T. +33 (0)1 XX XX XX XX | F. +33 (0)1 XX XX XX XX

DirectionDRTDépartementDILSLaboratoireLISE

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019