

NuSMV3: a framework for Formal Model Based Safety Assessment

Marco Bozzano, Roberto Cavada, Alessandro Cimatti, **Cristian Mattarei** Fondazione Bruno Kessler, Trento (Italy)

Roadmap

- Formal Model Based Safety Assessment
- Formal Safety Assessment
 - Current approach
 - Automated Fault Extension
- NuSMV3 formal verification framework
- Next challenges

FONDAZIONE

Roadmap

- Formal Model Based Safety Assessment
- Formal Safety assessment
 - Current approach
 - Automated Fault Extension
- NuSMV3 formal verification framework
- Next challenges

Fault Extension: the idea

Formal model (nominal)

Faulty model (extended)

Manual Extension

Manual Extension

PROS

- Highly expressive
- Does not need extra tools

CONS

- Error prone
- Not traceable process
- Time consuming

Fault Injection

Fault Injection

PROS

- Keeps nominal and fault model disjoint
- Traceable process
- Automatic technique
- *"Once and for all" validation* CONS
- Needs functional modeling

Fault Injection (FSAP)

Library Based Fault Injection

Faults Libraries

• Effects model library

One effect model describes the effects on the associated nominal component when a fault occurs e.g.: stuck at a value, invert a value, a value ramps down, ...

• Local dynamics model library

One local dynamic model describes the behavior of the fault

e.g.: a permanent or transient fault, self repair after 10 seconds, ...

Library Based Fault Injection

- Support for complex behavior
 - hybrid and discrete semantics
 - multiple input support
 - global dynamics interaction
- Easily extendable library definition
 - effects model and local dynamics
- User friendly and aided approach
 - human readable files definition
 - guided extension via GUI

Flow of the Fault Extension FONDAZIONE BRUNO KESSLER Nom **Effects Model** Comp em em em Library 1 2 n Local Dynamics ... Library **Id**₁ \mathbf{Id}_2 **Id**_n Nominal Nom Model Comp **fm**1 **fm**₂ **fm**n Ν Extension Info fm1 fm2 **fm**n

Roadmap

- Formal Model Based Safety Assessment
- Formal Safety assessment
 - Current approach
 - Automated Fault Extension
- NuSMV3 formal verification framework
- Next challenges

Flow of Formal MBSA

NuSMV3: Architecture

Adder Example

Adder example: Nominal Model

Components	Effect Model	Local Dynamics
bit1, bit2	StuckAt(0)	Permanent
bit1, bit2	StuckAt(1)	Permanent
bit1, bit2	Inverted	Transient

Adder example: components may fail

Components	Effect Model	Local Dynamics
bit1, bit2	StuckAt(0)	Permanent
bit1, bit2	StuckAt(1)	Permanent
bit1, bit2	Inverted	Transient
adder	StuckAt(0)	Permanent
adder	StuckAt(1)	Permanent

Analysis Results

Example: Fault Tree Analysis

Example: FMEA tables

FMEA TA	BLE ORDER 1	
Id.Nr.	Failure Mode	Failure Effects
1	bit1.output inverted	((random1=0 & random2 = 0) & adder.output !=0)
2	bit1.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
3	bit2.output inverted	((random1=0 & random2 = 0) & adder.output !=0)
4	bit2.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
5	adder.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
ld Nr	Failure Mode	Failura Effacta
<i>iu.ivi.</i>		
	1 · · a · · · · · · · ·	
1	bit1.output inverted	((random1=0 & random2 = 0) & adder.output !=0)
2	bit1.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
3	bit2.output inverted	((random1=0 & random2 = 0) & adder.output !=0)
4	bit2.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
5	adder.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
6	bit1.output inverted & bit1.output stuck_at_0	((random1=0 & random2 = 0) & adder.output !=0)
7	bit1.output inverted & bit1.output stuck_at_1	((random1=0 & random2 = 0) & adder.output !=0)
8	bit1.output inverted & bit2.output inverted	((random1=0 & random2 = 0) & adder.output !=0)
9	bit1.output inverted & bit2.output stuck at 0	((random1=0 & random2 = 0) & adder.output !=0)
10	bit1.output inverted & bit2.output stuck at 1	((random1=0 & random2 = 0) & adder.output !=0)
11	bit1.output inverted & adder.output stuck at 1	((random1=0 & random2 = 0) & adder.output !=0)
12		

Conclusion

Library based fault extension

- Highly Expressive
- Automated technique
- Time saving
- Traceable process

Next challenges

- Extension of expressiveness for library based fault injection
- Integration with industrial design tools

Thank you!

Cristian Mattarei FBK ES-Group mattarei@fbk.eu